Parallel evolutionary algorithms can achieve super-linear performance

نویسنده

  • Enrique Alba
چکیده

One of the main reasons for using parallel evolutionary algorithms (PEAs) is to obtain efficient algorithms with an execution time much lower than that of their sequential counterparts in order, e.g., to tackle more complex problems. This naturally leads to measuring the speedup of the PEA. PEAs have sometimes been reported to provide super-linear performances for different problems, parameterizations, and machines. Super-linear speedup means that using “m” processors leads to an algorithm that runs more than “m” times faster than the sequential version. However, reporting super-linear speedup is controversial, especially for the “traditional” research community, since some non-orthodox practices could be thought of being the cause for this result. Therefore, we begin by offering a taxonomy for speedup, in order to clarify what is being measured. Also, we analyze the sources for such a scenario in this paper. Finally, we study an assorted set of results. Our conclusion is that super-linear performance is possible for PEAs, theoretically and in practice, both in homogeneous and in heterogeneous parallel machines.  2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

A Thinning Method of Linear And Planar Array Antennas To Reduce SLL of Radiation Pattern By GWO And ICA Algorithms

In the recent years, the optimization techniques using evolutionary algorithms have been widely used to solve electromagnetic problems. These algorithms use thinning the antenna arrays with the aim of reducing the complexity and thus achieving the optimal solution and decreasing the side lobe level. To obtain the optimal solution, thinning is performed by removing some elements in an array thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2002